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A phase-space representation of quantum systems within the framework of the 
relative-state formulation is proposed. To this end, relative-position and relative- 
momentum states are introduced and their properties are investigated in detail. 
Phase-space functions that represent a quantum state vector are constructed in 
terms of the relative-position and relative-momentum states, and the quantum 
dynamics is investigated by using the phase-space functions. Furthermore. 
probability distributions in phase space are considered by means of the relative- 
state formulation, and it is shown that the phase-space probability distribution is 
closely related to the operational probability distribution. The marginal 
distribution, characteristic function, and operational uncertainty relation are 
also discussed. 

1. I N T R O D U C T I O N  

Several authors have recently proposed phase-space representations of 
quantum systems by means of the abstract Hilbert space in order to investigate 
the time evolution of quantum systems in phase space and the correspondence 
principle between quantum and classical mechanics (Torres-Vega and Freder- 
ick, 1980, 1993; Harriman, 1994; Wlodarz, 1994). Conventionally, the Wigner 
function (Wigner, 1932; Hillery et al., 1984) and Husimi function (Husimi, 
1940; Kano, 1965; Mohta and Sudarshan, 1965) are used for these purposes. 
The phase-space representation is also useful in the group-theoretic approach 
to quantum mechanics (Kim and Noz, 1991). For example, a phase-space 
function that represents a quantum state of a single-particle system with one 
degree of freedom is given by a square-integrable function tb(r, k) which 
satisfies the normalization condition given by f~-~ dr f ~  dk I~(r, k) l 2 = 1. 
Obtaining expressions for the canonical position and momentum operators 
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acting on the phase-space function (Tones-Vega and Frederick, 1980, 1993) 
and finding the kernel of the transformation between the phase space and 
position space (or momentum space) (Harriman, 1994) are key points of the 
phase-space approaches. 

I have recently presented a relative-state formulation to describe a quan- 
tum system (Ban, 1991a, 1993a) and have shown (Ban, 1992a,b, 1993b, 
1994a) that a quantum mechanical phase operator in quantum optics can be 
defined in terms of the relative-number states, free of the well-known difficult- 
ies in the conventional theories (Susskind and Glogower, 1994; Carruthers 
and Nieto, 1964). The average values of phase quantities calculated by the 
proposed method are equal to those obtained by the Pegg-Barnett phase 
operator method (Pegg and Barnett, 1988, 1989; Barnett and Pegg, 1989). 
In the relative-state formulation, a reference system is introduced to describe 
the physical properties of a relevant system. Thus the total system that is 
considered consists of the relevant and reference systems. The point is that 
a state of the reference system is determined, depending on what we would 
like to know about the relevant physical system. In this sense, the reference 
system may be considered a measurement apparatus. In some cases, however, 
the reference system may be a fictitious one. It will be shown here that the 
Hilbert space for the total system is analogous to that used to construct the 
phase-space representation (Torres-Vega and Frederick, 1980, 1993; Ham- 
man, 1994) and that the relative-state formulation gives the phase-space 
representation in a natural way. 

Quasiprobability distributions in quantum optics are important tools for 
investigating nonclassical properties of light (Gardiner, 1991; Carmichael, 
1993; Walls and Milburn, 1994). The Glauber-Sudarshan P-function 
(Glauber, 1963a,b; Sudarshan, 1963), the Wigner function (Wigner, 1932; 
Hillery et  al., 1984), and the Q-function (or the Husimi function) (Husimi, 
1940; Kano, 1965; Mehta and Sudarshan, 1965) are used extensively, and 
the generalized P-function is also used to investigate quantum optical systems 
(Drummond and Gardiner, 1980). It will also be shown here that another 
kind of phase-space probability distribution can be introduced by means of 
the relative-state formulation. Probability distributions in the relative-state 
formulation are positive-definite and are expressed as convolutions of the P- 
function and Q-functions and of the two Wigner functions. It will be shown 
that the phase-space probability distributions are closely related to the opera- 
tional probability distribution (Wddkiewicz, 1984, 1986, 1987; Royer, 1985; 
Burak and Wddkiewicz, 1992) and the fuzzy-space distribution functions 
(Prugove~:ki, 1976a,b, 1978; Twareque All and Prugove~:ki, 1977). 

In this paper, it will be shown that the phase-space representation and 
phase-space probability distribution of a quantum system can be constructed 
by means of the relative-state formulation, and their properties will be investi- 
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gated in detail. For this purpose, the relative-position and relative-momentum 
states are introduced as basic tools. These states are defined on an extended 
Hilbert space that is a tensor product of two Hilbert spaces: the Hilbert space 
of the relevant physical system, and the Hilbert space of the reference system. 
The relative-position state describes the total system in terms of a certain 
reference position and a position relative to it. The relative-momentum state 
has the same meaning as the relative-position state, but in momentum space. 
The relative-position and relative-momentum states lead to the phase-space 
representation of quantum system. Furthermore, the phase-space probability 
distributions can be introduced in terms of the relative-position and relative- 
momentum states. 

This paper is organized as follows. Section 2 introduces the relative- 
position and relative-momentum states in the extended Hilbert space and 
investigates their properties in detail. The expressions of position, momentum, 
annihilation, and creation operators acting on the relative-position and rela- 
tive-momentum states are found. Section 3 obtains the reduced description 
of the relevant physical system by projecting the extended Hilbert space into 
the appropriate subspace. The reduced description leads to the phase-space 
representation of the relevant system. The quantum dynamics of pure and 
mixed states of the relevant system in the phase space are investigated. As 
examples, a free particle and a harmonic oscillator in the phase space are 
considered. Section 4 introduces probability distributions in the phase space 
by means of the relative-position and relative-momentum states and investi- 
gates their properties in detail. It is shown that these probability distributions 
are closely related to the operational probability distribution. Furthermore, 
the marginal distributions, characteristic function, and operational uncertainty 
relation are investigated, and several examples of the phase-space probability 
distributions are obtained. Section 5 summarizes the paper. 

2. RELATIVE-POSITION AND RELATIVE-MOMENTUM 
STATES 

2.1. Relative-Position State 

This section introduces the relative-position and relative-momentum 
states and derives the expressions for position, momentum, annihilation, and 
creation operators acting on these states. In the relative-state formulation, we 
consider a composite system that consists of two independent systems: one 
is the relevant physical system and the other is a reference system. For 
simplicity here, we denote a state vector and an operator of the relevant 
system as I~; A) and Oa, for example, and those of the reference system as 
I+; B) and 08. A state vector I ~; A) of the relevant system is an element of 
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a Hilbert space ~a, and a state vector I~; B) of the reference system is an 
element of a Hilbert space ~s .  A state vector I~))  of the composite system 
that we consider is thus given by I qt)) = I~; A) ® I+; B) and is an element 
of a tensor product space ~ = ~A ® ~B. When we consider a mixed state, 
a statistical operator I~ of the composite system is given by W = 0A ® 15B, 
where Oa and Ibe are, respectively, statistical operators of the relevant and 
reference systems. 

Let us first consider the relative-position state of the composite system. 
A set of position eigenstates becomes a complete orthonormal set. Denote 
position operators of the relevant and reference systems as 2A and ~fB and 
their eigenstates as Ix; A) and Ix; B), such that -rA IX; A) = xlx; A) and 2BIx; 
B) = xlx; B). We assume, for simplicity, that each system has one degree 
of freedom. Then we have complete orthonormal sets of the relevant and 
reference systems, {Ix; A)lx  ~ R} and {ix; B)tx  E R}. Here R stands for 
the set of real numbers, and Ix; A) and I x; B) satisfy the following orthogonality 
and completeness relations: 

(9°; x ly; 5?) = ~(x - y) (2.1a) 

~ d x  Ix; 5°)(~; xl = 1~ (2.1b) 

where b ° stands for A or B, and where ]a and ]B are unit operators in the 
Hilbert spaces ~a and ~8. Thus a complete orthonormal set of the composite 
system is given by 

SA+B = { Ix, y)) = Ix;a)  ® ly; B)lx, y E R} (2.2) 

where the vector Ix, y)) satisfies the relations 

((y, x tx ' ,  y')) = g(x - x')~(y - y') (2.3a) 

f ] = d x f 2 = d y l x ,  y))((y, xl = ' [ A ®  ]n (2.3b) 

with ((y, xl = (Ix, y)))*. 
The set Sa+e describes the composite system in terms of the positions 

of the relevant and reference systems. We would instead like to describe the 
composite system in terms of a certain reference position and a relative 
position between the relevant and reference systems. To this end, we introduce 
a state vector I'tr,(r, x))) of the composite system: 

I-rr,(r, x))) = Ix + ½(1 + s)r; A) ® Ix - ½(1 - s)r; B) (2.4) 

which satisfies the relations 
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(.2A -- dB) l'G(r, x))) = rl ~.,(r, x))) (2.5a) 

½(.2A + Y8) l'G(r, X))) = (X + ½sr) lw.~(r, x))) (2.5b) 

The relation 

I x ; A ) ® l y ; B )  = 'rr,. x - y , - - ~ x +  y 

is also obtained. It is easy to see that the parameter r in the state I'rr,.(r, x))) 
represents the relative position between the relevant and reference systems. 
Thus, we refer to the state l'tr.,(r, k))) as the relative-position state. Since we 
obtain the relations 

2A I "G(r, x))) = [X + ½(1 + s)r] 1 Try(r, x))) (2.6a) 

~,B I ~rs(r, x))) = Ix - ½(1 - s)r] I 'rrs(r, x))) (2.6b) 

we see that if we set s = 1, 0, or - 1, the parameter x in the state I "G(r, x))) 
respectively represents the position of the reference system, the center between 
the relevant and reference systems, or the position of the relevant system. A 
set of the relative-position states { I'G(r, x))), I r, x E R} becomes a complete 
orthonormal basis of the composite system, satisfying the relations 

((~s(r, x) l'n~(r', x'))) = 6(r - r')6(x - x')  (2.7a) 

f[= dx f[= dr I~r,(r, x)))((Tr,(r, x)l = iA ® iS (2.7b) 

The state vector given by equation (2.4) is a generalization of the state vector 
introduced in Ban (1993a). 

Next we introduce a state by Fourier transformation of  the relative- 
position states I'G(r, x))) with respect to the parameter x: 

2t  l'G(r, k))) = dx t~,(r, x)))e i~ (2.8) 
o o  

This state plays an essential role in introducing the phase-space representation 
of quantum systems in Section 3. Since the Fourier transformation is unitary, 
the set of the transformed states { 1 "rrs(r, k))) 1 r, k ~ R } becomes a complete 
orthonormal basis of the composite system and satisfies the relations 

((~r.,(r, k)l 'G(r ' ,  k'))) = 6 @ -  r ' ) 8 ( k -  k') (2.9a) 

I' dr I ~ dk lrr,(r, k)))((Tr~(r, k)l = ]A ~ ]B (2.9b) 
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It is important to note that the state vector I'rL.(r, k))) is a simultaneous 
eigenstate of the relative-position operator -fa - -re and the sum of the 
momentum operators PA + '0B (Helstrom, 1974; Leonhardt and Paul, t993), 
where /ga and '0a are momentum operators of the relevant and reference 
systems and satisfy the canonical commutation relations [£A, PAl = iJ,~ and 
[£8, ,08] = ila. It is easy to verify the following eigenvalue equations: 

(£A -- £a) I'rr.,(r, k))) = rl "rL.(r, k))) (2.10a) 

(,0a +/~8)l'rr~(r, k))) = kl~r~(r, k))) (2.10b) 

We also refer to the state vector l'rr~(r, k))) as the relative-position state. It 
is seen from equations (2.4) and (2.8) that the dependence of the relative- 
position state t'rr~(r, k))) on the parameter s appears only in a phase factor: 

I'rrs(r, k))) = I'rr(r, k)))e i~l -,'~kr/2 (2.1 1 ) 

where the state vector I'rr(r, k))) is given by 

l~r(r, k))) - , ~  dx Ix + r; A) ® Ix; B)e i~'. (2.12) 

We introduce the following annihilation and creation operators of the 
relevant and reference systems: 

"~A + il3A ~t  £A -- ifiA 
- ~ ,  - ~ (2.13a) 

/~ _ £a + i/~B / jr _ £a - i'0t~ (2.13b) 

which satisfy the commutation relations [& dr] = ia and [/~, /~*] = Ja. We 
can then obtain the Fock representation of the relative-position state 17r,.(r, k))): 

= 1 Ix t2  
l'rr.~(r, k))) ~ exp I + i.zci t - + - iskr 

× 10;A) ® 10; B) (2.14) 

where 10; A) and 10; B) are vacuum states of the relevant and reference 
systems defined by the relations ill0; A) = 0 and/~10; B) = 0 and where 
the complex parameter IX is given by 

r +  ik 
tx = v/~ (2.15) 

In the definitions (2.13), we have assumed the position and momentum to 
be dimensionless. The derivation of the Fock representation (2.14) is given 
in the Appendix. 
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2.2. Relat ive-Momentum State 

The relative-momentum state I~r,.(p, k))) of the composite system is 
defined as 

I'fi'~.(p, k))) = Ip + ½(1 + s)k; A) ® Ip - ~-(1 - s)k; B) (2.16) 

where Ip; A) and Ip; B) are eigenstates of the canonical momentum operators 
/Sa and ,68 of  the relevant and reference systems:/~alp; A) = pip; A) and 
/~8 Ip; B) = p Ip; B). The relative-position state I ~ ( p ,  k))) satisfies the relations 

(/~a - /~8)  I'fi',(p, k))) = kt ~r,.(p, k))) (2.17a) 

½(/~a +/~8)l'~'.~(p, k))) = (p + ½sk)l~r~(p, k))) (2.17b) 

The relation 

( ,_s 7 ) 5 5  I p ; a ) ® l p ' ; B ) =  @ , p - p ' , - - ~ p +  p' 

is also obtained. It is easy to see that the parameter k in the state l'~~(p, k))) 
indicates the relative momentum between the relevant and reference systems. 
It is also seen that if we set s = I, 0, or - 1, the parameter p in the state 
I'fi-~(p, k))) respectively represents the momentum of the reference system, 
the average momentum of the relevant and reference systems, or the momen- 
tum of the relevant system. Because sets {Ip; A)lp  E R} and {Ip; B)lp  E 
R} are complete orthonormal bases of  the relevant and reference systems, 
respectively, it is found that {l~,~(p; k)))lp, k ~ R} becomes a complete 
orthonormal basis of the composite system, satisfying the relations 

((~,(p, k)l'fi'~(p', k'))) = g(k - k')~(p - p') (2.18a) 

f~ d k f ~ d p  l~rs(p,k)))((qr,(p,k)l = ] a ®  i8 (2.18b) 

The description of the composite system in terms of the relative-momentum 
states I~.,.(p, k))) in momentum space is the same as that in terms of the 
relative-position states J'rr,.(r, x))) in position space. 

Next we introduce another relative-momentum state t ~ ( r ,  k))) by Fourier 
transformation of I ~,.(p, k))) with respect to p: 

I'fi-,(r, k))) = - ~  dp i gr~(p, k)))e -ipr (2.19) 
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The relative-momentum state I~,.(r, k))) is a simultaneous eigenstate of the 
difference of  the momentum operators/~a - / ~ e  and the sum of the position 
operators -f'a + -fB, 

(/~A - -  /08) I'fi'.,(r, k))) = kl-rr.~(r, k))) (2.20a) 

(-~A "]- .fn) I'fi'.~(r, k))) = rl ~.,.(r, k))) (2.20b) 

It is easy tO see that the set {l'rr.,.(r, k)))lr, k ~ R} becomes a complete 
orthonormal basis of  the composite system and satisfies the relations 

(('fi'.~(r, k)l'fi'~(r', k ')))  = ~(r - r ' )~(k - k ' )  

Lf_ dx dkl~r,(r,  k)))((~rs(r, k)l = iA ® in 

(2.21 a) 

(2.21b) 

The dependence of the relative-momentum state I ~ ( r ,  k))) on the parameter 
s appears only in a phase factor: 

I~r~(r, k))) = I~r(r, k)))e -m-s)kn2 (2.22) 

where the state vector I'fi'(r, k))) is given by 

'IL I ~r(r, k))) - , ~  dp Ip + k; A)  ® [p; B)e -ipr (2.23) 

The Fock representation of  the relative-momentum state L~(r, k))) is 
given by 

t 12 I~',(r, k))) = ~ exp I IX 

x I0; A) ® I 0; B) 

1) 
+ 1~ t -1- ~*/gt -- ¢~t~t + ~ iskr 

(2.24) 

where the complex parameter tx is given by equation (2.15). The derivation 
of this expression is given in the Appendix. 

2.3. Expressions of Basic Operators 

Finally, we obtain the expressions for the position, momentum, annihila- 
tion, and creation operators acting on the relative-position state I~r~(r, k))) 
and relative-momentum state I ~,.(r, k))). To this end, let us suppose that the 
composite system is described by a state vector I qt)) which is an element of 
the extended Hilbert space ~ = ~ a  ® ~S, and let us set 
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~s(r,  k) = ((v,~(r, k) lq '))  (2.25a) 

(2.25b) 

which are square-integrable functions satisfying the normalization conditions 

dr dk I xlt,(r, k) l 2 = dr dk I~.~(r, k) l 2 = 1 (2.26) 

First consider the function ~. ( r ,  k) in terms of  the relative-position 
states. Using equations (2.4) and (2.8), we obtain the expressions for the 
canonical position and momentum operators (~fA, /~A) and (-fB, P~): 

((-rr~(r, k)l~fAIqs)) = [+(1 + s)r  + iO~]~s(r, k) (2.27a) 

(('rrs(r, k)lfialXtr)) = [if(1 - s)k - iOr]~s(r, k) (2.27b) 

and 

(('rr~(r, k) t . f s l~))  = -[ff( l  - s)r  - iOk]qS~(r, k) (2.28a) 

(('rr.,(r, k)l/~Blqt)) = [½(1 + s)k + iOr]~s(r, k) (2.28b) 

where 0r and Ok stand for O/Or and O/Ok, respectively. Furthermore, using the 
relations (2.13a) and (2.13b), we can obtain the expressions for the annihila- 
tion and creation operators (6, 4*) and (/~,/~*) from equations (2.27) and (2.28): 

((rr,.(r, k)161q~)) = [~l,z + sl~*) + 0~*]qs.,(r, k) (2.29a) 

(('rG(r, k ) l~*l~))  = [~1 ~* + six) - O~]q~s(r, k) (2.29b) 

and 

(('rr,(r, k)I/~lq,')) = -[~IX* - six) + O~]~.,.(r, k) (2.30a) 

((,rr~(r, k)t/~*l~)) = - [ ~ i x  - st-z*) - 0¢.]qS~(r, k) (2.30b) 

where the complex parameter ~ is given by equation (2.15) and we set 0~ 
= 0/0IX and O~. = 0/0~*. 

Now consider the function ~t.(r, k) in terms of the relative-momentum 
states. When we use equations (2.16) and (2.19), we obtain the expressions 
for the position and momentum operators: 

(('fi',.(r, k)l.falqt)) = [~l -- s)r + iOk]~,.(r, k) (2.31a) 

(('~.,(r, k)l/~alq~)) = [~1 + s)k - iOr]~(r,  k) (2.31b) 
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and 

({'fr~(r, k)12nl~}) = [~1 + s)r - iO~]~.,.(r, k) (2.32a) 

((~.,.(r, k)l/~Blqs)} = --[~1 -- s)k  + iO~]~.,.(r, k) (2.32b) 

For annihilation and creation operators, we can get the following relations: 

{(~,(r, k)lfilqS}) = [~IX - six*) + 0~,.]~.~(r, k) (2.33a) 

{(gr,(r, k) lhtlqs}) = [~ix* - six) - O~]~,(r ,  k) (2.33b) 

and 

{{-rr,(r, k) l/~l 'It)) : [~IX* + six) + 0~]~,(r, k) (2.34a) 

{{'fi~(r, k)f/~tl'tr)) = [~ix + six*) - 0,.l~t,(r, k) (2.34b) 

The expressions (2.27)-(2.30) and (2.31)-(2.34) of the basic operators are 
used to investigate the dynamics of a quantum system in the phase space. 

3. PHASE-SPACE REPRESENTATION OF QUANTUM STATE 

3.1. Reduced Description of the Relevant System 

To describe the composite system, we have introduced the relative- 
position and relative-momentum states I'rr.4r, k))) and I-?r,(r, k))). When we 
wish to investigate only the relevant system, however, the extended Hilbert 
space ~ = ~A ® ~ e  tO which the state vectors I'rrs(r, k))) and I~( r ,  k))) 
belong is too large. Thus, to describe the quantum mechanical properties of 
the relevant system, we have to restrict the extended Hilbert space ~ = ~A 
® ~ 8  tO an appropriate subspace ~o- To this end, let us assume that we 
know the state of  the reference system and that the state of  the reference 
system remains unchanged (Stenholm, 1980). We denote this state as l,b; B). 
This indicates the restriction of the extended Hiibert space ~ = ~ a  ® ~ e  
tO the subspace ~0  = ~ a  ® {I dO; B)}. It should be noted here that we never 
trace out the reference system. Thus in this reduced description we can 
consider the following states as the relative-position and relative-momentum 
states of the relevant system: 

I rr.,(r, k); A) --- (B; qb I rr,.(r, k))) 

_ 1 e - i~ l+~/z  (~ dx  ix; A ) + * ( x  - r ) e  ilc" (3.1) 
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and 

I'lL(r, k); A) ~ (B; do IqL(r, k)}} 

1 el{ I +s)kr/2 f_~ = ~ _ _  dp Ip; A)6*(p  - k)e -`pr (3.2) 

where we set d0(x) = (B; xldo; B) and d)(p) = (B; p l+ ;  B). 
Throughout Section 3 we ignore the index A of a state vector of the 

relevant system unless that would introduce confusion. Thus the state vector 
written without an index explicitly belongs to the Hilbert space ~a.  The 
states I'rr,.(r, k)) and I~( r ,  k)), for example, indicate l'rr~(r, k); A) and l'?r,(r, 
k); A). In the following, we will refer to the state given by equation (3.1) as 
the reduced relative-position state and to that given by (3.2) as the reduced 
relative-momentum state. 

Let us first investigate the properties of the reduced relative-position 
state l%(r, k)). It is easy to see that a set of the reduced relative-position 
states, { 1%(r, k)) I r, k E R}, becomes a complete nonorthogonal set of the 
relevant system and satisfies the relations 

I~o d r f ~  dkl~rs(r ,k))(%(r,k)  . 

= dr dx Ix)(xl Ido(x - r)i 2 = 1 (3.3a) 
~cz 

('rL(r, k) I'n's(r', k')) 

= 1._ ei(l+s~(kr_k,r,)/2 (~ dx do(x - r)do*(x - r')e -i(*'-k'u (3.3b) 
2~r 

When we set r = r' and k = k' in equation (3.3b), we obtain the normalization 
condition of the reduced relative-position state: ('rr.~(r, k) l'rr,(r, k)} = 1. The 
nonorthogonality of the reduced relative-position state is due to the restriction 
of the Hilbert space. The completeness relation (3.3a) ensures that any state 
vector of the relevant system can be expanded in terms of the reduced relative- 
position states. When the reference system is in a coherent state 113; B), such 
that/~1 13; B) = 13113; B), the reduced relative-position state 1%(r, k)) becomes 

1 I'rr,(r, k; 13)) = ~ eillm~f3P'l-skr/2]l IX q- 13") (3.4) 

where I1~) and 10) are respectively the coherent and vacuum states of the 
relevant system and where the complex amplitude IX is given by ix = (r + 
ik)/~/2. In deriving equation (3.4), we have used the Fock representation of 
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the relative-position state given by equation (2.14). The state I'rr.~(r, k; 13)) is 
nothing but a coherent state, and in this case equations (3.3a) and (3.3b) 
become 

f • d r  f[= dk 17rdr, k))('rrs(r, k) l 

1 fR d2~ I ~)(~1 i 
'Tr 2 

(~r,(r, k)I ~r.,(,", k')) 

(3.5a) 

13" ~' 13" 1 exp -~( l lx l  + 12 + I + 12 ) -  (ix* + 13)(~' + 13") 
2-rr 

1 -1 
is(kr - k'r') | (3.5b) +5 

d 

In particular, when the reference system is in the vacuum state I~b; B) = 10; 
B), we obtain 

1 e-iskr/2 I'rr.~(r, k; 0)) = - ~  [1~) (3.6) 

For a wave packet state I~) of the relevant system, we can use equations 
(2.27) and (2.29) to obtain the following expressions for the position, momen- 
tum, annihilation, and creation operators of the relevant system: 

and 

(Tr,.(r, k) l£1 d~) = [½(l + s)r + iOk]d~(r, k) 

(-rr~(r, k ) Ip l~)  = [~-(l - s)k - iO~]~(r, k) 

(v.~(r, k)lalq,) = [½(~ + s~*) + O~.]~,(r, k) 

(~r,(r, k) l a t l~ )  = [½(t-~* + sl x) - O~]~,(r, k) 

(3.7a) 
(3.7b) 

(3.8a) 

(3.8b) 

where we set +~(r, k) = ('rr.dr, k) t~), which is a square-integrable function. 
Now consider the properties of  the reduced relative-momentum state 

I'fi',(r, k)) given by equation (3.2). It is easy to see that a set of  the reduced 
relative-momentum states given by { I gr~(r, k)) I r, k ~ R } becomes a complete 
nonorthogonal set which satisfies the relations 
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~ dr I~= dk I ~s(r, k))(~rs(r, k) I 

= ] ~  dk f]~ dp Ip)(pl ' l~(p - k)l z = [ (3.9a) 

(~r,(r, k) l~r,(r', k')) 

I_ __ 1 e_i(l+s)(kr_k,r,)l 2 dp ~(p - k)~*(p - k ' ) e  i p ( r - r ' )  (3.9b) 
2~r = 

When we set r = r '  and k = k' in equation (3.9b), we obtain the normalization 
condition of  the reduced relat ive-momentum state: (~ ( r ,  k) l'fi's(r, k)) --- 1. 
When the reference system is in a coherent state 10; B) = 113; B), the reduced 
relat ive-momentum state becomes 

1 
t-fi's(r, k; 13)) = ~ e-illm(~f3)-skr/21t tX -- ~*) 

4 z~r 
(3.10) 

where we have used the Fock representation of  the relat ive-momentum state 
given by equation (2.24). In this case the reduced relat ive-momentum state 
is nothing but a coherent state. In particular, we obtain for a vacuum state 
of  the reference system 

1 i~krf)  l~(r ,  k; 0)) = ~ e "  - IX) (3.11) 

For a wave packet state I ~) of  the relevant system, we can use equations 
(2.31) and (2.33) to obtain the expressions for the position, momentum,  
annihilation, and creation operators of  the relevant system: 

('fi'~(r, k) l . f l~)  = [½(1 - s)r + iOk]~.~(r, k) (3.12a) 

(~r~(r, k)lplt~) = [½(1 + s)k - ia,](~.~(r, k) (3.12b) 

and 

(e~(r, k ) l f i l+)  = [½(IX - six*) + 0,.]tb.,(r, k) (3.13a) 

(~r,(r, k)16+l~) = [½(1~* - six) - 0~]t~,.(r, k) (3.13b) 

where we set tb.,.(r, k) = < ~ ( r  k) l~), which is a square-integrable function. 
Before leaving this section, let us consider the relation between the 

reduced relative-position and reduced relat ive-momentum states. Since ~(p)  
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is given by the Fourier transformation of +(x), we can obtain from equa- 
tion (3.2) 

1 i -.,.)kr/2 i ~  I ~,.(r, k)) = ~ e-i( _ _ dr  I x)~b*(r - x)e ikr (3. 14) 

Comparing this with equation (3.1), we obtain 

I'rrdr, k)) = I~r_s(r, k)) (3.15) 

if +(x) is an even function; that is, if +(x) = + ( - x ) .  For example, a vacuum 
state of the reference system satisfies this condition because +(x) = "rr-1;4 
exp(-x2/2).  

3.2. Phase-Space Funct ion of  Q u a n t u m  State 

Let us now consider a phase-space function which represents a quantum 
state of the relevant system. Suppose that the relevant system is described 
by a state vector I+). Since both the reduced relative-position and relative- 
momentum states I-rr,(r, k)) and I'fi',(r, k)) satisfy the completeness given by 
equations (3.3a) and (3.9a), we can express the state vector I ~) of  the relevant 
system as 

I+)=f~drf~= dk,.dr, k)l~rs(r,k) ) 

= f~ dr I~ dk ~(r, k)I'fi's(r, k)) (3.16) 

where the functions ~( r ,  k) and tbs(r, k) are given by 

~s(r, k) = (v~(r, k) t~)  (3.17a) 

d~.~(r, k) = (~( r ,  k)I~) (3.17b) 

The normalization condition of  the state vector requires that +.~(r, k) and ~.~(r, 
k) should satisfy the relations 

f~ dr f~ dr' f~ dk f_~dk' 

x t~.*(r, k)tb.,.(r', k')(rr,.(r, k) lTr.~(r', k')) = 1 (3.18a) 

x ~.*(r, k)~.~(r', k ')@,,(r,  k ) l ~ . ( r ' ,  1¢')) = 1 (3.18b) 
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Furthermore, equations (3.17a) and (3.17b) lead to the normalization condi- 
tions for ~.,(r, k) and ~.,.(r, k): 

I~  d r L d k l + . , . ( r , k ) 1 2 = L d r L d k l ~ . , ( r , k ) l Z =  1 (3.19) 

When a state vector I+) is given, we get the functions +.~(r, k) and t~h, 
k) from equations (3.17a) and (3.17b). On the other hand, if functions ~(r ,  
k) and t~.~(r, k) that satisfy the conditions (3.18) and (3.19) are given, we can 
obtain the normalized vector t~) through equation (3.16). Thus, we find that 
a quantum state of the relevant system can be represented by the square- 
integrable function ~.,.(r, k) or t~.,.(r, k). The phase-space probability distribution 
is given by I~.~(r, k) l 2 or I~.~(r, k) l z. We will refer to t~.~(r, k) and ~.~(r, k) as 
the phase-space functions that represent a quantum state I~). In the following, 
the usual wave functions in position and momentum space will be denoted 
as ~(x) = (xl~) and t~(p) = (pl~), respectively. 

First consider the phase-space function ~s(r, k) = ('rr~(r, k) l+). It is easy 
to see that a phase-space function ~.~(r, k) and wave function t~(x) representing 
the same quantum state ItS) are connected by the transformations 

~,~(r, k) = f;= dx ~(r, kix)~(x) (3.20a) 

LL ~(x) = dr dk T*(r, klx)~.~(r, k) (3.20b) 

where the kernel ~(r, klx) of the transformation between the phase space 
and position space is given by 

~(r, klx) = (rr~(r, k)Ix) 

1 = ~ ~b(x - r)e -i~t'~-'l+s,r/21 
,/ e ~r 

(3.21) 

The transformation kernel satisfies the relations 

dr dk ~.(r, k lx)T*(r ,  k l x ' )  = 6(x - x') (3.22a) 

I i ~  k lx)Ts  ( r ,  Ix) (Try(r, k ) l ~ ( r ,  k')) (3.22b) dx ~.(p, * ' k' = . . ' 

where the right-hand side of equation (3.22b) is given by equation (3.3b). 
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Similarly, the relationship between the phase-space function ~,(r, k) and 
the wave function tb(p) in momentum space is given by 

k) = f[= dp ~(r, k lp)~(p)  (3.23a) 

~(p) = dr dk r*(r, klp)qJ,(r, k) (3.23b) 
- - 2  

where the transformation kernel ~(r, kip) is given by 

T,.(r, kip)  = (~,(r, k)lp) 
_ 1 ~ - ~  ~b(k - p)e ilp-(l-s)klzlr (3.24) 

which satisfies relations analogous to equations (3.22a) and (3.22b) but with 
p and p' replacing x and x'. In particular, if the reference system is in the 
vacuum state Ida; B) = 10; B), the transformation kernels T~(r, klx) and ~.(r, 
kip) become Gaussian functions: 

1 - 2  T~(r, klx) = (27r3/2)3/~ exp (x - r) z - ikx + i kr (3.25a) 

[, is]  
1 - 2  ~(r, kip)  - (2~3t2)u 2 exp (p - k) 2 + ipr - i - - - - ~  kr (3.25b) 

If we substitute s = 0 into these functions, we obtain the transformation 
kernels equivalent to those obtained in Harriman (1994). In this case, the 
kernels ~(r, klx) and ~(r, kip) lead to the Husimi transformations. 

Now consider the phase-space function ~,(r, k) = {%(r, k) l~). When 
we use the completeness relation of the reduced relative-momentum state 
given by (3.9a), we obtain the kernel iP.~(r, k Ix) of the transformation between 
the phase space and position space, 

L(r, klx) = (~r.,(r, k)lx) 

I - ~ +(r - x ) e  - i k [ x - ( I - s ) r l 2 l  (3.26) 

which leads to the transformation between d)s(r, k) and t~(x): 

~,(r, k) = f~= dx L(P. klx)qKx) (3.27a) 

d~(x )=I]=drI~=dkT" .* ( , , k l x )~ , ( r , k )  (3.27b) 
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We further obtain the kernel i~,(r, kip) of the transformation between the 
phase space and momentum space: 

L(r, k t p ) =  (£r~(r, k)lp) 

_ 1 , j ~  ~(p - k ) e  i lp-I I  +s)k/21r (3.28) 

Thus we obtain the transformation between tb.~(r, k) and t~(p): 

~s(r, k) = i~= dp T,(r, klp)~(p) (3.29a) 

~(P) = Ii~ dr [~  dk ~ ( r ,  klp)~s(r, k) (3.29b) 

The transformation kernels its(r, k lx) and ir~(r, k I p) satisfy the relations 

f~oodr I~ dk Ts(r, klz)f'*(r, klz ')  = ~(z - z') (3.30a) 

f ~  -* ' k' - ' dz L(r,  klz)Ts (r ,  Iz) = (gr,.(r,. k)l ' rq(r ,  k')) (3.30b) 

where the variable z stands for x or p. In particular, if the reference system 
is in the vacuum state, the transformation kernels /'~(r, klx) and Ts(r, kip) 
are given by 

[ 1 , - s  ] 
_ 1 - 2  i"s(r, klx) (271.3/2)1/2 exp (x - r) 2 - ikx + i ~ kr (3.31a) 

[, l + s  1 1 -2 Ts(r, kip) - (271.3/2)1/2 exp (p - k) 2 4- ipr - t ~ kr (3.31b) 

When we substitute s = 0 into these functions, the transformation kernels 
become equivalent to those obtained in Harriman (1994) and lead to the 
Husimi transformations. 

Now consider the relation between the transformation kernels. Suppose 
that ~(x) = (B; x l~; B) is an even function with respect to x; that is, qb(x) 
= qb(-x). In this case, since we have the relation (3.15) between the reduced 
relative-position and relative-momentum states, we can obtain the follow- 
ing relations: 

Ts(r, klx) = T_~(i, klx) = e-iskr~.(r, klx) (3.32a) 

~(r, kip) = T_,(r, kip) = e-iSk~(r, kip) (3.32b) 
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Note that the kernels given by equations (3.25) and (3.31) satisfy these 
relations because we have qb(x) = "rr-~/4 exp(_x2/2) for the vacuum state of 
the reference system. 

3.3. Dynamics of Quantum System in the Phase Space 

Now let us use the phase-space functions +,(r, k) and W~(r, kl  r ' ,  k ' )  to 
consider the quantum dynamics of the relevant system in the phase space. 
It should be noted here that the composite system consists of the relevant 
and reference systems. In this consideration, it is postulated that the relevant 
system evolves with time according to its own dynamics governed by a 
Hamiltonian and that the reference system is fixed in a certain state and does 
not evolve with time (Stenholm, 1980). It is also assumed here that the 
relevant system does not interact with the reference system through an interac- 
tion Hamiltonian. 

First consider the case in which the system is described by a pure state. 
According to the above assumption, the state of the composite system at time 
t can be expressed as 

i,I,(t))) = i , ( t ) )  ® i,l,; 8)  (3.33) 

where I~(t)) is the state of the relevant system at time t and I~b; B) is the 
fixed state of the reference system. The time evolution is governed by the 
Schr6dinger equation 

0,1~(t))) = -i/-~/l~(t))) (3.34) 

where H = H[.f,/~] is the Hamiltonian of the relevant system and 0, stands 
for 0/0,. Using the relations 

(('rr~(r, k)  l ~ ( t ) ) )  = ('rrs(r, k) l~(t)) = tbs(t; r, k)  (3.35a) 

((TL.(r, k) lH(.f, fi) ~(t))) = H[½(1 + s ) r  + iOk, ½(1 - s ) k  - iar]+.~(t; r, k) 
(3.35b) 

we obtain the equaHon of motion for the phase-space function ~.~(t; r, k) of 
the relevant system: 

O,tb.~(t; r. k) = -iH[½(I + s)r  + " i tak, T(I -- s)k  - iOr]d).,.(t; r, k) (3.36) 

Using the completeness relation (3.3a) of the reduced relative-position state 
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and the solution of equation (3.36), we can calculate the expectation value 
of a physical quantity A = A[~f,/5] of the relevant system as 

(A( t ) )  = (+(t) la(~f,/~) I~(t)) 

× +*(t; r, k)A[½(l + s)r  + ion, ½(1 - s)k - iOr]~.~.(t; r, k) (3.37) 

Therefore if the phase-space function d~.~(t; r, k) is obtained at any time, we 
can calculate all the physical quantities of the relevant system. 

Let us now consider the case in which the system is described by a 
statistical operator l~'(t). The statistical operator W(t) can be expressed as 

~¢(t) = 0(t) ® l+; e)(& +t (3.38) 

where 15(t) is a statistical operator of the relevant system at time t. The 
time evolution of the statistical operator is governed by the Liouville-von 
Neumann equation 

0,~,'(t) = -i[/2/, W(t)] (3.39) 

The phase-space function that represents the statistical operator is given by 

W~(t; r, k l r ' ,  k ' )  = ((Try(r, k)l lTV(t) l Trs (r ' ,  k ' ) ) )  

= ('rr~(r, k) 115(t)l'rr~(r', k')) (3.40) 

Thus, using equations (3.7), (3.39), and (3.40), we can obtain the equation 
of motion for the phase-space function W~(t; r, kl r',  k ' )  of the relevant system: 

O,W~(t; r, k l r ' ,  k ' )  

= -i{H[½(1 + s)r + i0~,t(1 - s)k - iOr] 

- H[~(1 + s)r '  - i0k,,ff(t - s)k' + iO,.]}W~(t; r, k l r ' ,  k ' )  (3.41) 

Using the procedure given in Torres-Vega and Frederick (1993), we can 
rewrite this equation as 

o,W~(t; r, k t r ' ,  k ' )  

= - i  H (1 +s ) r , -~ (1  - s ) k  exp 0r0k 

~ ( I  + s ) r ' , - ~ ( l  - s ) k '  exp - - -  

× W,.(t; r, k l r ' ,  k ' )  

2i ak 

1 - s  

2i '-- ~ 2i 
0r, Ok, + 

l + s  1 - s  
0h, 0r, 

(3.42) 
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,t - --> 

where we have defined the operations 0x and 0x as 

f (x )o~  = o~f(x)  = 7 x f ( x )  (3.43) 

for an arbitrary differentiable function f (x) ,  and where we have further the 
relation 

{____ ___) 

f ( a  + bO~, c + dO:,) = f (a ,  c) exp(bO,,Ox + d~.~,). (3.44) 

From equation (3.42) we obtain the equation of  motion for the phase-space 
probability distribution function W(t; r, k) = W~(t; r, kl r, k): 

O,W(t; r, k) 

= 2H (1 + s ) r , ~ ( l  - s)k 

{ x lm exp 0r0k 1 - s - -  0kc]r ~.(t; r, k l r ' ,  k' .45) 
J l r '  = r . k ' = k  

where Im stands for the imaginary part. The physical meaning of the phase- 
space probability distribution function will be considered in Section 4. 

By making use of the phase-space function W,.(t; r, k lr', k'), we can 
calculate the expectation value of the physical quantity ,4 = A(.f, p) of the 
relevant system as 

(.4(t)) = Tr[A(2, fi)ff'(t)l 

= f ~ d r f ; d k  

× A[½(I + s)r + i0k, ½(1 - s)k - iOr]Ws(t; r, klr 'k ')l /=r~,=, (3.46) 

Thus, if we obtain the phase-space function Ws(t; r, k lr',  k'), we can calculate 
all physical quantities of  the relevant system. 

Finally, let us briefly consider a phase-space function that represents a 
dynamical variable/~ of  the relevant system. This function is given by 

As(r, k l r ' ,  k') = ('rr,(r, k)l.J, I'rr,.(r', k')) (3.47) 

Using the phase-space functions A,.(r, k l r ' ,  k') and W,.(r, k l r ' ,  k') [or ~.~(r, 
k)], we can calculate the expectation value of  A as 
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(tt)= i~ dr fS dr' f'_~dk f~ dk' 

× ~*(r, k)Adr, klr', k')~(r', k') (3.48) 

for a pure state of  the relevant system and as 

x As(r, klr', k')W~(r', k' Ir, k) (3.49) 

for a mixed state of  the relevant system. 
We have used the reduced relative-position states to consider the quantum 

dynamics of the relevant system in the phase space. In the same way, we 
can use the reduced relative-momentum states to consider the quantum 
dynamics of  the relevant system in the phase space. 

3.4. Free Part icle in the Phase Space 

Consider, as a simple example of the general consideration, a free particle 
with unit mass in the phase space. Assume that the initial state of the particle 
at t = 0 is given by a Gaussian wave packet in the position space: t~(0; x) 
= 7r -~/4 exp(-x2/2).  We also assume, for simplicity, that the state of the 
reference system is described by the Gaussian wave packet: qb(x) = 7r -1/4 
exp(-x2/2).  Since the Hamiltonian for the relevant system is given b y / 4  = 
pz/2, we obtain the following wave function at time t: 

~(t; x) - ,].rl/4( 1 ,4- it) 1t2 exp 2(1 + it) (3.50) 

from which the probability densities in the position and momentum spaces 
are given by 

id#(t;x)12 - 1 ( x 2 ) 
[~(1 + t2)] I/2 exp 1 + t 2 (3.51a) 

1 I~(/; p) t z = - ~  exp(-p2)  (3.51 b) 

Using the kernel (3.25a) of  the transformation between the phase space and 
position space, we obtain the phase-space function of the free particle: 

[ l ( _ _ _ ~ l  )r2 l ( l+it)k2 
1 - 2  \2 + it] 2 \~-# t t ]  ~( t ;  r, k) - [-rr(2 + it)] I/2 exp 

.[1 + it\ - t~ -~ t t )kr+i~-~- fkr]  (3.52) 
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the squared amplitude of which is given by 

I~,(t; r, k) l 2 - 'rr(4 + t2) I/z exp - 4  + t -------~'~ r - -~ kt  (3.53) 

1 k2 ] 
2 

Thus the phase-space probability distribution is Gaussian. 
On the other hand, we obtain the equation of motion for ~,(t; r, k) from 

equation (3.36), 

O,~.~(t; r, k) = -½i[½(1 - s)k - iOr]2~(t; r, k) (3.54) 

and the initial condition is given by 

1 
, , (0;  r, k) = - ~  exp[-¼r 2 - ¼k 2 - ½ikr + ½i(1 + s)kr] (3.55) 

Solving the equation of motion (3.54) with the initial condition (3.55), we 
also obtain the result given by equation (3.52). 

Using the probability distribution function (3.53), we obtain the fluctua- 
tions of r and k in the phase space: 

(Ar), 2 = ½(t 2 + 2), (Ak)] = 1 (3.56) 

It should be noted that the fluctuations of the position and momentum calcu- 
lated by the wave function are given by 

- t  (3.57) ( ~ ) ~  = ½(t 2 + l), (ap)7 ~ 

Thus we find the relations 

(Ar)] = (Ax)] + ' (Ak) 2 = (Ap) 2 + ~ (3.58) 

The enhancement of the fluctuations in the phase space is due to the quantum 
fluctuation of the reference system. This will be considered in Section 4. 

3.5. Harmonic  Oscillator in the Phase Space 

Now let us investigate the phase-space function of a harmonic oscillator 
with unit mass and unit frequency. The Hamiltonian is given by 

/ : / =  I ^, I (3.59) ~(p- + 2 2) = d*& +-s_ 

We first consider the eigenstate of the Hamiltonian. In the Fock space repre- 
sentation the eigenstate is given by 
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1 (~t),, i 0 ) (3.60) iq,.) = 
where /:/1~,) = (n + ½)1~,,) and 10) is the vacuum state of the relevant 
system (d 10) = 0). Using the phase-space representation of the annihilation 
and creation operators given by equations (3.8a) and (3.8b), we can obtain 
the phase-space function of the energy eigenstate: 

1 t~Ar, k ln) = ~ (~r~(r, k) l(fitylo) 

] [  ] _ 1 1 1 
~ (Ix* + s t  x ) -  O~ exp - ~ l l x l  ~ + ~ s ( t x  2 -  Ix .2) 

ltL*,, [ 1  1 ] = ~ exp - - ~  t ~ l  2 -t- ~ S([.t,- -- I.Z *2) (3 .61)  

with ~ = (r + ik)/v/2. In deriving this equation, we have assumed, for 
simplicity, that the reference system is in the vacuum state. The phase-space 
function ~s(r, kin) satisfies the relations 

j ~  dr f[~ dk ~*(r, klm)~.~(r, kin) = ~,,.,, (3.62a) 

1 e_is~kr_k,r,)12(la, t~.*(r, k ln)t~s(r', k' In) = ~ I p~) (3.62b) 
,,=0 

where It z) is a coherent state of the relevant system. 
The phase-space probability distribution function is given by the squared 

amplitude of the phase-space function. Thus we obtain from equation (3.61) 

] [ ,  ] It~.~(r, kln)l 2 - 1 (r 2 + k 2) exp - ~  (r 2 + k z) (3.63) 
2'rrn ! 

It should be noted here that since the classical Hamiltonian of  the harmonic 
oscillator is given by H~(x, p) = -f(p- + x-), we can express the probability 
distribution (3.63) as 

1 ~.~(r, kln)l 2 = ~ [Hd(r, k)]"e -/4~l~'k~ (3.64) 
2"rrn! 

From equation (3.63) or (3.64) we find that in the phase space the most 
probable trajectory of the energy eigenstate is characterized by 

I 2 (3.65) H~j(r, k) = ~(r + k z) = n 

This relation corresponds to the semiclassical quantization condition of a 
harmonic oscillator. 
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Now consider the coherent state I a)  of  the relevant system with complex 
amplitude a = (q + ip ) / , f i .  In this case we obtain the phase-space function, 

~.,.(r, klq,  p) = (Tr.~(r, k)la)  

' [ 4  1 , ] = ~ e x p  - ( r - q ) 2 - ~ ( k - p ) 2  + 2 i ( p r _ q k + s k r )  

(3.66) 

where we have assumed the vacuum state of the reference system. Since we 
have exp(-i / ) t tc~) = l a exp( - i t ) )  for the harmonic oscillator Hamiltonian 
(3.59), the phase-space function at time t is given by 

~.~(t; r, k l q, p) 

, , 
2 ~ e x p  - ( r - q , ) 2 - 4 ( k - p , ) 2  , ] + ~ i(p,r - q,k + skr) 

(3.67) 

where q, and q, are the solutions of the classical equations of motion for the 
harmonic oscillator: 

q, = q cos t + p sin t (3.68a) 

Pt = P cos t - q sin t (3.68b) 

Since the phase-space probability distribution function is obtained from equa- 
tion (3.67), 

[, , ] 1 - 2  2 (3.69) L~,(t;r, k lq, p) 1 2 = ~ e x p  ( r - q t )  2 -  ( k - p  f -  

we find that in the phase space the most probable path of  the coherent state 
is the classical trajectory of  the harmonic oscillator. 

In the same way we obtain the phase-space function for the squeezed 
state of the relevant system: 

G(r, k l ~,, q, p) 

= (~r,(r, k) l/)(a)S(~/)lO) 

= 1 exp[  
['rr(e': + e-'¢)] 1/2 

( pr  kq ) 1 e2"Y- 1 
+ i "1 + e -2"/ e :'~ + 1 - ~ i - -  e 2~ + 1 

(r -- q)2 (k - p)2 

2(e 2"~ + 1) 2(1 + e -2~) 

'1  - -  (kr + pq) + -~ iskr 

(3.70) 
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where the displacement operator D(cO and the squeezing operator S(~/) are 
given by 

/3(a) = exp[afi* - a ' a ] ,  S(~/) = exp[½~(6 .2 - a2)] (3.71) 

and we have assumed that the squeezing parameter ",/ is real. The phase- 
space probability distribution of the squeezed state at time t is given by 

I~.~(t; r, k t %  q, p)l 2 

_ 1 expF 1 + (e 2 ~ -  l ) s i n 2 t ( r _  qt) 2 
• r(e ~ + e -v )  L e zv + 1 

_ 1 - (1 - e-2V)sin2t (k - p~)2 
1 + e  -2v 

1)sin 2t 
(r  - q,)(k - p,)]  (3.72) 

+ 1  

by equations (3.68a) and (3.68b). The average 

(e2-¢ - -  

e2-1 

where qt and Pr are given 
values and fluctuations of  r and k at time t are calculated as 

( r ) ,  = 

(Ar)~ = 

(a/O, = 

q,, (k), = p, (3.73a) 

½(1 + e2~)[cos2t + e -2v sin2t] (3.73b) 

½(1 + e-2~)[cos2t + e 2~ sin2t] (3.73c) 

We also find that the most probable path of  the squeezed state in the phase 
space is the classical trajectory. 

Finally, consider the thermal state of the harmonic oscillator as an 
example of  the mixed state. The statistical operator ~ of  the thermal state is 
given by 

1 ~--0 In) (n I (3 .74)  
P - l + n  = 

where In) is the number eigenstate and ~ is a bosonic distribution function. 
We assume here that the reference system is in the vacuum state. Thus the 
phase-space function W(r, kl  r ' ,  k ' )  is calculated as 

W~(r, k l r ' ,  k ' )  

1 ,~=n 11 , , - n)t~s ( r ,  k ' l n )  1 + ~ ,=  s(r' kl 

_ t [ rr' + kk'  i(rk' - r 'k) 1 
2rr(1 + ~ ) e x P L  2(1 + ~ )  2(1 + ~ )  4 

i i ] 
- -~ (k  - k ' ) ( r  + r') + ~ (s + l)(kr - k ' r ' )  

1 
- r ' ) 2 - 4 ( k - k ' )  2 (r 

(3.75) 
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where we have used the phase-space function (3.61). Using this result, we 
obtain the phase-space probability distribution function W(r, k) = W(r, kl r, 
k) for the thermal state: 

W(r, k) 2"rr(1 + B) exp 2(1 + fi) 

_ 1 [ nc,(r, k)] 
2'rr(l + ~) exp i ~ - n  J (3.76) 

where H~(r, k) is the classical Hamiltonian of the harmonic oscillator. To 
check the formula (3.46), let us calculate the thermal average of the Hamilto- 
nian (3.59): 

(I~I) = dr dk-~ (1 + s)r + iOt + (1 - s)k - iOr 

X W~(r, k l r ' ,  k')lr,=~.k,=k 

= dr dk + 1 + ~ Hd(r, 

1 
= - + fi (3.77) 

2 

where Ws(r, k lr', k') and W(r, k) are given by equations (3.75) and (3.76). 
This is the expected result. It is easy to see from equations (3.76) and (3.77) 
that the following relation is satisfied: 

I (3.78) (l?t) = (Hcl(r, k)) + -£ 

The second term on the right-hand side of this equation is the vacuum energy. 

4. PROBABILITY DISTRIBUTION IN THE PHASE SPACE 

4.1. Phase-Space Probability Distributions 

In this section, phase-space probability distributions are introduced in 
terms of the relative-position states and relative-momentum states, and their 
physical meanings are considered in detail. The phase-space probability distri- 
bution considered in this section is shown to be closely related to the opera- 
tional probability distribution (W6dkiewicz, 1984, 1986, 1987; Royer, 1985; 
Burak and W6dkiewicz, 1992). We assume here that the state of the composite 
system (the relevant and reference systems) is described by the noncorrelated 
statistical operator 
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if' = 15 ® 15' (4.1) 

where 15 and 15' are, respectively, the statistical operators of the relevant and 
reference systems. The phase-space probability distributions W(r, k) and if(r, 
k) in the relative-state formulation are defined as 

W(r, k) = ((TL(r, k) l I~l "rrs(r, k))) (4.2a) 

ft'(r, k) = ((gr,(r, k) l I,~¢)~(r, k))) (4.2b) 

where the relative-position I'rr,.(r, k))) and relative-momentum states [gr,(r, 
k))) of the composite system are given by equations (2.8) and (2.19), respec- 
tively. It should be noted that the phase-space probability distributions are 
positive-definite, independent of the parameter s, and normalized as 

f -~  dr I ~  I ~  f~oo dk W(r, k) = dr dk I~(r, k) = 1 (4.3) 

Since the relative-position state l'rr.~(r, k)}) is the simultaneous eigenstate of 
operators 2A - 28 and fiA + fib and the relative-momentum state I~,(r, k))) 
is the simultaneous eigenstate of operators 2a + -~B and fia - fiB, we obtain 
the relations 

<(-~A -- xB)m(fiA ~- fiB) n) = [ ~  dr f~ dk r"lg'W(r, k) (4.4a) 

-~" "~B)m(fiA __ fiB) n) = foo d r  f~  dk  rmld'lTV(r, k) (4.4b) ((-~a 

where we set (O) = Tra Tr8[015 ® 15'] for any operator O. 
First consider the phase-space probability distribution W(r, k) in terms 

of the relative-position states. Using the definition of the relative-position 
state I'rrs(r, k))), we find the expression 

l I ~  I ~  eik(x-v)(a; W(r, k) = ~ dx dy . y + r1151x (4.5) 

+ r; A){B; y I (J' Ix; B) 

Now, introduce an operator 15ref of the relevant system through the relation 

(,4; x115~et-ly; A) = (B; yllb' Ix; B) (4.6) 

where the operator 15r~,- satisfies the property of a statistical operator. It should 
be noted here that the quantity on the left-hand side of this equation is 
calculated in the relevant system and the quantity on the right-hand side is 
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calculated in the reference system. It is easy to see that the operator 15r~r can 
be expressed as 

15,er = ~ ~ r m; A)[(B; n115'lm; B)](A; nl (4.7) 
IIl=O I1=0 

Then using the operator 15r~f, we can rewrite equation (4.5) as 

W(r, k) = ~ dx dy 

x ei~("-))(A; y + r115Ix + r; A)(A; x115~dy; A) 

1 -2 f2dxf dY 
× (A; y leirpa15e -ir~a Ix; A)(A; x leik-ea15refe-i'~aly; A} 

1 
- -  Tr[eir~a15e-i@Aeik.fa15refe-ik~:A ] 

2~r 

= 2 ~  Tr[15/)(r, k)15rer/}t(r, k)] (4.8) 

where 2a and fi,~ are the position and momentum operators of the relevant 
system and Tr stands for taking the trace of the relevant system. In this 
equation,/}(r, k) is the displacement operator in the phase space: 

/}(r, k) = exp[i(kXa - rfia)] 

= exp[lx6* - Ix*c~] = /}(Ix) (4.9) 

where the complex parameter ix is given by ix = (r + ik)/,f2 and where 
= (-fa + ipa)/-~ is the annihilation operator of  the relevant system. The 
phase-space probability distributions for several states of  the reference system 
are given in Section 4.6. 

Suppose that both the relevant and reference systems are in the pure 
states and that we set 15 = ItS; A)(A; Ol and 15' = Ido*; B)(B; do*l. In this 
case the relation (4.6) becomes 

(A; x l Orefly; A) = (B; y l do*; B){B; dO* Ix; B) (4.10) 

and so the operator 15r~f is given by 15,~f = I do; A)(A; dO l. Substituting 15 and 
15r~f into equation (4.8), we obtain the probability distribution 

1 
W(r, k) = ~ I(Ot/}(t, k)ldO)l 2 (4.11) 

where we have dropped the index A. This probability distribution is equivalent 
to that obtained by W6dkiewicz (1984, 1986), who considered the operational 
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meanings of the measurement process. Furthermore, the probability distribu- 
tion (4.11) can be written as 

1 f~ 2 
W(r, k) = ~ ]_,~ dx t~(x + r)~(x)e -i~ (4.12) 

where t~(x) = (xl t~) and +(x) = (xl ~). The physical meaning of the quantity 
on the right-hand side was discussed first by Aharonov et al. (1982; O'Connell 
and Rajagopal, 1982). We can thus see that the phase-space probability 
distribution W(r, k) constructed in terms of the relative-position states is 
closely related to the operational probability distribution. 

Next we introduce, after Cahill and Glauber (1969a,b), the following 
quantities of the relevant system: 

W(a; e) = Tr[15T(a; e)] (4.13a) 

7"(a; e) = 1 f d2 ~/~(~; ¢)e,,~._,,, ~ (4.13b) 
"iT -JR2 

/3(t~; s) = exp(~fi* - ~*& + ½e I~12) (4.13c) 

where dec = d(Re l~)d(Im 6). The function W(a; e) is the e-ordered quasiproba- 
bility distribution. The statistical operator can be expressed in terms of these 
quantities as 

= I IR d2ot W(a ; - e )T (a ;  E) (4.14) 15 g . ,  

Similarly, the operator 15~ef corresponding to the state of the reference system 
can be expressed as 

1 fR d2a Wref(a; -- e)T(ot; e) (4.15) 

where W~f(a; e) is given by replacing t5 with 15~. in equation (4.13a). 
Substituting equations (4.14) and (4.15) into equation (4.8) and using 

the relation 

/)(tx)/f'(a; ~)/}t(p,) = 7"(Ix + a; e) (4.16) 

we can obtain the phase-space probability distribution in terms of the e- 
ordered quasiprobability distributions W(a, e) and W~¢t.(a, e): 

1, f dZot Wref(ot; -e)W(oe + I,.t; e) (4.17) W(r'k) = ~ JRz 
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with ix = (r + ik)/v/-2. It should be noted that if we set • = 1, 0, or - 1, the 
function W(c~; •) becomes the P-function, Wigner function, or Q-function: 

1 ( d2 ~ Tr[15e~,e_~,~]e,~._,~, ~ (4.18) P(a)  = 1,rr W(a; I) = ~5 JR2 

1 IR d2~ Tr[15e~C'*-~*"]e~*-~*~ (4.19) = ± o )  = 2 Ww(a) "rr 

Q(ct) = ~1 W ( c t ; - 1 )  = ~51 fu2 dz~ Tr[15e-~*%e'~;]e'~*-'~*¢ (4.20) 

Thus we can express the phase-space probability distribution (4.17) as 

I JR d2ct Prcf(°OQ(°~ + ix) (4.21a) W(r' k) = -2 2 

= -lIR2 2 d2c~ Qrcf(cOP(ct + ~) (4.21b) 

=(~ (L~f~ dpWwsef(X,p)Ww(x+r,p+k) (4.21c) 

where P(ct) [P~f(ct)], Q(ct) [Q~f(ct)], and Ww(x, p) [Ww,~f(x, p)] are the P- 
function, Q-function, and Wigner function, respectively, corresponding to 15 
[15ref]. Thus, we can use these relations to obtain the phase-space probability 
distribution at any time if we know the time evolution for the P-function, 
Q-function, or Wigner function. When we know, for example, the Wigner 
functions of the relevant and reference systems at time t, Ww(t; x, p) and 
Ww.rCf(t; x, p), we can use the relation (4.21c) to obtain the phase-space 
probability distribution W(t; r, k) at time t. It should be noted here that the 
normalization conditions are given by 

f~ dr I°° d k W ( r , k ) = 2 f  d2~z W(r,k)= 1 (4.22a) 
J-~ J-~ JR 2 

The right-hand side of equation (4.2 lc) has the same form as the nonnegative 
smoothed Wigner function introduced in Lalovi6 et al. (1992). 

Now consider the phase-space probability distribution if(r, k) con- 
structed in terms of the relative-momentum states. Let us introduce an operator 
6"~f of the relevant system by the relation 
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(.4; p l(Tr¢flp'; A) = (B; p ' l~ '  lp; B) (4.23) 

where Ip; A) and Ip; B) are the momentum eigenstates of the relevant and 
reference systems, and where the operator 6"~¢f has the property of a statistical 
operator. The operator 6"rCt- can be expressed as 

6"r~t- = ~] Im; A)[(-  1)"+"(B; nl~)'lm; B)I(A; nl (4.24) 
m=O n=0 

Using the operator 6"r~f, we can express the phase-space probability distribu- 
tion VC(r, k) as 

W(r, k) = ~ Tr[ib/9(r, k)~rrefb*(r, k)] (4.25) 

where/3(r, k) is the displacement operator given by equation (4.9). We can 
therefore obtain results for l~,'(t, k) by replacing Pref with O'ref in those obtained 
for W(r, k). 

Finally, consider the relation between the operators 15~f and 6-r~f given 
by equations (4.6) and (4.23). Using the fact that Ix; A) and Ip; A) are 
connected to each other by the Fourier transformation, we can obtain the 
relations 

(A; xl(r~flx'; A) = (A; -x115~fl - x'; A) (4.26a) 

(A; plOreflp'; A) = (,4; -pll3refJ - p'; A) (4.26b) 

Thus, we can use the parity operator (I introduced in Royer (1977) and obtain 
the relations 

O'ref : l~Ipref I~, ~ref = l~16"r~f I~ (4.27) 

Here the parity operator I~I of the relevant system is given by 

I~l = If:~ dx I -x ;  a)(a; xl = ff~ dp l -p ;  a)(a; pl (4.28) 

which satisfies the relations 1¢I =lfI* and I~F = i. In particular, we find that 
I~ref = O'ref for the vacuum state of the reference system. 

4.2. Marginal  Distr ibutions 

Now consider the marginal distributions derived from the phase-space 
probability distributions W(r, k) and W(r, k). The marginal distributions of 
the quasiprobabilities in quantum optics have recently been investigated in 
order to get a deeper understanding of the nonclassical photon state (Agarwal, 
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1993; Orlowski and Wtinsche, t993). For the phase-space distribution func- 
tion W(r, k) defined by equation (4.2a), the marginal distributions are given by 

W(r) = f]= dk W(r, k) (4.29a) 

W(k) = I ~  dr W(r, k) (4.29b) 

Substituting equation (4.5) into these equations, we can express the marginal 
distributions W(r) and W(k) as 

W(r) = f]= dx f(x - r)<A; xl ~ Ix; A) (4.30a) 

W(k) = [ ~  dp g(k - p)<A; p1151p; A) (4.30b) 

where the functions f(x) and g(p) are given by 

f(x) = <A; xllS~flx; A> = (B; xt~' lx;  B) 

g(p) = (A; pld'~flp; A) = <B; pllS'lp; B) 

(4.31 a) 

(4.31 b) 

Here we have used the relations (4.6) and (4.23). We see from equations 
(4.30a) and (4.31a) or equations (4.30b) and (4.31b) that in the position or 
momentum measurement, the function f(x) or g(p) plays the role of the 
filter function that determines the accuracy of the measured value. The filter 
function is determined if the state of the reference system is given. Thus it 
seems reasonable to consider that the reference system is the measurement 
apparatus. Furthermore, it should be noted that the marginal distributions 
(4.30a) and (4.30b) can be derived by means of the fuzzy space formulation 
of quantum mechanics (Prugove~ki, 1976a,b, 1978; Twareque Ali and Prugo- 
ve~ki, 1977). 

When the reference szstem is in the coherent state I cx> with complex 
amplitude ~ = (q + ip)/,/2, we obtain the filter functions 

f(x) = "rr -jl2 exp[- (x  - q)2] (4.32a) 

g(k) = -rr-1/2 exp[- (k  - p)2] (4.32b) 

This means that the coherent state is the optimal state for simultaneous 
measurement of position and momentum. For the squeezed-vacuum state of 
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the reference system I~/) = exP[½~/(/~ *2 - b:)] 10) with real squeezing parame- 
ter ~, the filter functions f(x) and g(k) are given by 

f(x) = (e2"~'rr)-i/2 exp(-e-2~x 2) (4.33a) 

g(k) = (e- ZVTr) - I/2 exp(-e~-Vk 2) (4.33b) 

Thus if ~/ > 0, the measurement of momentum is more accurate than that 
of position. In particular, when the squeezing parameter is extremely large, 
we can approximate W(k) ~- (.4; kl~Ik; A) for ",/ > >  1 and W(r) ~- (,4; 
rl lblr; A) for - ' y  > >  1. This indicates that one of the marginal distributions 
approaches the position or momentum probability of the relevant system if 
we use the highly squeezed vacuum state of the reference system. 

Next consider the phase-space distribution function l,~'(r, k) defined by 
equation (4.2b). The marginal distributions are given by 

17V(r)= I~ dk lTV(r,k) = f~ d x f ( r -  x)(A;xl~lx;A ) (4.34a) 

17V(k) : f~ dr lTV(r, k) = I~ dp g(p - k)(A; plf)lp; A ) (4.34b) 

where the functionsf(x) and g(p) are given by equations (4.3 la) and (4.31b). 
The meanings of these marginal distributions are the same as those of the 
distributions (4.30a) and (4.30b). I f f (x)  [or g(p)] is an even function, the 
marginal distributions obtained from the phase-space functions W(r, k) and 
if(r, k) are equal to each other. That is, W(r) = ft'(r) [or W(k) = if(k)]. 

4.3. Characteristic Function 

Here we obtain the characteristic function by means of the phase-space 
probability distribution. We will confine ourselves to considering the function 
W(r, k), but the characteristic function derived from the function l~(r, k) can 
be obtained in the same way. Using equations (4.I3) and (4.17), we can 
obtain the relation 

iR d2P. W(~)e_~,+~, ~ = 1_ C(~; e)Cref(-~; - ¢ )  (4.35) 
2 2 

where the characteristic functions C(c~; E) and Cref(c~; ~) are given by 

I fR d213 W(~; e)e -~*+~*~ (4.36a) C(~; ~) = Tr[~/5(~; ~)] = ~ 2 

t f d2 ~ W~er(~; E)e -'~ls*+'~*ls (4.36b) Cref(e~; ~) = Yr[l~ef/5(c~; ¢)] = ~ JR~" 
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Then using equation (4.35), we can calculate the moment (r"k") as 

( r ' k " ) = I ~ d r I ~ : d k r " k " W ( r , k )  

= 2 l+(,n+n)/2 fR 2 d2ix IXT'IX~W(IX) 

I R  m n - ~o t*+  p.*o~ = i,,-,,,2 l-~,n÷,,)n d2ix W(ix)O~20,~le I,~=0 
2 

= in-mg- I 'n+ 'O/2[ ,T  '' ,q" ¢-'(e¢" 6)Cref(-a; -6)] [a=0 (4.37) . ~ t v c ~ 2 v ~  i ~ k ~  ~ 

where ix = Ixl + i1~2, a = al + ia2, and O~j = 0/0%, and where we have 
used the fact that Ix = (r + ik)/,/-2. Therefore if the respective characteristic 
functions of the relevant and reference systems are given, we can use equation 
(4.37) to obtain all the moments in the phase space. Thus we obtain the 
characteristic function in the phase space: 

) ( e  i lEr-(k)) : C "6 Cref ~ + i~. - e  (4.38) 
' 4 c ~  ' 

That is, the characteristic function by means of the phase-space probability 
distribution is given as the product of  the characteristic functions calculated 
by the quasiprobability distributions of the relevant and reference systems. 

We can use equation (4.35) to express the phase-space probability distri- 
bution W(r, k) as 

1 fa d2a C(a; E)Cref(-(x; - e ) e  Ca*-~*a (4.39) W(r, k) = 2--- 5 2 

Thus it is easy to see that the phase-space probability distribution W(r, k) is 
given by 

W(r, k) = C're~{0~., -O~; -6)W(Ix; 6) (4.40) 

where we set C~t(c~, c~*; 6) = C~ef(c~; 6) = Tr[lb~f/)(o~; 6)]. When the reference 
system is in the vacuum state, we obtain C~f(a, a*;  - e )  = e x p [ - ( l  + 
e) l a l 2/2]. Equation (4.40) thus becomes 

' [ '  ] W ( r , k ) = ~ e x p  ~(1 +e)O~O~, W(IX;6) 

_ t2,rr exp[  1 (1 + e ) ( O ~ +  0~)] W(IX; e) (4.41) 
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In particular, using equation (4.8) with 15ref = 10)(01, we obtain the follow- 
ing expressions: 

W(r, k) = ~Q(Iz) 

- ~ exp(O~O~,) P(tx) 
[ ~ 

= exp[¼(0r + OD]Ww(r, k) (4.42) 

where Q(tx), P(tx), and Ww(r, k) are the Q-function, P-function, and Wigner 
function, respectively, of the relevant system. 

4.4. Uncertainty Relation 

This section briefly considers the uncertainty relation in the phase space. 
It is easy to see that the moments (r") and (/(') are calculated as 

(r~) = I ~  dr r~W(r) = Tr[(2a -- 2B)~O ® 15'] (4.43a) 

(ld) = f ~  dk k"W(k) = Tr[(pa + pe)"15 ® 15'] (4.43b) 

where W(r) and W(k) are the marginal distributions given by equations (4.29a) 
and (4.29b). Using equations (4.43a) and (4.43b), we can obtain the uncer- 
tainty relation 

(Ar)2(Ak) z >- [(Axa)(ApA ) + (Axs)(Aps)l 2 --- 1 (4.44) 

where we set (AA) 2 = (A 2) - (,4) z. In deriving the inequality, we used the 
fact that there is no correlation between the relevant and reference systems. 
The minimum value of the uncertainty product is twice that of the usual 
uncertainty product. This relation is equivalent to the operational uncertainty 
relation obtained in W6dkiewicz (1987). 

Although the uncertainty product ArAk has to satisfy the inequality 
(4.44), we can reduce the fluctuation such that Ar < 1 or Ak < 1. This may 
be called operational squeezing. In fact, when the relevant system is in the 
coherent state and the reference system is in the squeezed-vacuum state, we 
can obtain (Ar) 2 = -~(1 + e 2v) and (Ak) z = ~(1 + e -2"~) (see Section 4.6). 
If the squeezing parameter of the reference system is extremely large, the 
additional noise due to the quantum fluctuation of the reference system can 
be taken out completely from that of the phase-space variables. If both 
relevant and reference systems are in the coherent states, we obtain the 
relation Ar = Ak = 1. 

It should be noted that dA -- xB commutes with/~a +/~B. Thus, dA -- ~f8 
and/~a +/~8 represent simultaneously measurable quantities. However, if there 
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is no correlation between the relevant and reference systems, the uncertainty 
relation (4.44) is satisfied. Let us suppose that there is a correlation between 
the relevant and reference systems and consider the state given by 

I~' = r~)) ( (~l  (4.45a) 

I~)) = (1 - g2)m ~ gn ln ;A)®l ,1 ;B)  
n=0  

(4.45b) 

with I gl < 1. This state is equivalent to the two-mode squeezed-vacuum 
state. The uncertainty relation in this state becomes 

A r A r  - 1 - g (4.46) 
l + g  

Thus we obtain the relation 0 < A r A r  < 1 for 0 < g < 1. 

4 . 5 .  P h y s i c a l  S y s t e m s  

The relative-position state l'rr~(r, k))) is the simultaneous eigenstate of 
2a - 28 and/~a + /~8 and the phase-space probability distribution W(r, k) dr  
dk  is the probability that 2A -- 2R and PA + /~8 take values in (r, r + dr) and 
(k, k + dk), respectively. On the other hand, the relative-momentum state 
I'?r.~(r, k))) is the simultaneous eigenstate of-fa + 28 and PA -- PB, and the 
phase-space probability distribution 17V(r, k) dr dk is the probability that 2A 
+ 2 s and/~A -/SB take values in (r, r + dr) and (k, k + dk), respectively. 
Thus the relative-position and relative-momentum states and the phase-space 
probability distributions are closely related to the simultaneous measurement 
of the conjugate variables (Arthurs and Kelly, 1965; Stenholm, 1992; Yama- 
moto and Haus, 1986). In this section, we will briefly consider the quantum 
optical systems in which the measurable quantities are 2A --+ 2S and/Ta ~/~8 
(Lai and Haus, 1989). 

First consider a 50%-50% lossless beam splitter (Lai and Haus, 1989). 
Let d~, and /;~, be the annihilation operators at the two input ports of the 
beam splitter. Then the annihilation operators of the two outputs of the beam 
splitter are given by 

^ _ 1 / 
(din - -  t ~ i n ) ,  bout = ~ (ai. + /~i.) (4.47) aout 

, /2  

Using the homodyne detections for the two output signals, we can measure 
the quadrature components given by 
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1 1 
= dotoO = (2A - 2 e )  

i 1 
- - bout) ~ (Pa + fiB) f  (Sou, = 

, /z , / z  

where 2A, 28 and PA, PB are given by 

1 
3~Z = " ~  (ain "]- ailn), 

1 

(4,48a) 

(4.48b) 

Thus the measured quantities are 2a - £e and fa + fs- In this case, the 
relative-position state I "rr~(r, k))) and the phase-space probability distribution 
W(r, k) are suitable for describing the system. 

Next consider the heterodyne detection in the Shapiro-Wagner scheme 
(Shapiro and Wagner, 1984; Hradil, 1992). In this case, the measured quanti- 
ties are the real and imaginary parts of the operator given by 

6 = d +/~t (4.50) 

where (& dr) and (/;,/~*) stand for the signal and image band modes in the 
heterodyne detection, respectively. The real and imaginary parts of the opera- 
tor ~ are given by 

1 
2 = ~ ( 6  + 6  t) =2a  +2B (4.51a) 

i 
f - , ~  (6 - 6*) = Pa - f s  (4.51b) 

where 2 (28) and PA (re) are the position and momentum operators (or the 
quadrature components) of the signal (image band) mode, respectively. Thus 
the measured quantities are 2a + 2B and fa  - pie, and we find that this system 
is described by the relative-momentum state l grs(r, k))) and the phase-space 
probability distribution l,V(r, k). 

The relative-position and relative-momentum states and the phase-space 
probability distributions are also suitable for describing quantum communica- 
tion (Heistrom, 1974), in which it is important to simultaneously estimate 
the values of the operators 2A and/3a of the signal mode that carries informa- 
tion. But because the position operator 2a does not commute with the momen- 
tum operator PA, we instead consider the mutually commuting variables 2a 
+- 2s and fa ~ /~8 by introducing the fictitious mode (2B, PB), and so we 
have to extend the Hilbert space to describe the fictitious mode. This is called 

i 
PA -- ,f~ (di, -- d~,) (4.49a) 

i 
fo  -- ,,~ (/~i, -- t;~n) (4.49b) 
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the Naimark (1940) extension. The quantum estimation theory is constructed 
in the extended Hilbert space (Holevo, 1973). The phase-space probability 
distribution W(t, k) or W(r, k) is thus suitable for investigating quantum 
communication. 

4.6. Examples of the Phase-Space Probability Distributions 
This section considers the phase-space probability distribution W(r, k) 

given by equation (4.8) for several reference system states that are typical 
in quantum optics. 

4.6.1. The Vacuum State 

When the reference system is in the vacuum state tO; B), the statistical 
operator of  the reference system is given by t5' = I 0; B)(B; O l. In this case, 
the relation (4.6) becomes 

' [ '  ] (B; y115' Ix; B) = - ~  exp - 2  (x2 + y2) 

= (A; x115refly; A) (4.52) 

Thus, it is easy to see that the operator 15ref is equal to the statistical operator 
for the vacuum state of the relevant system; that is, 15ref = I 0; A)(A; 0 I. Then 
we obtain 

/)(ix)Oref/gt(tx) = [ Ix; A)(A; Ix l (4.53) 

where I Ix; A) is the coherent state of the relevant system. Therefore the phase- 
space probability distribution W(r, k) becomes 

W(r, k) = -½Q(Ix), Q(tx) = 'rr-I(A; Ix1151 ~; A) (4.54) 

where Q(~) is the Q-function (or the Husimi function) of the relevant system 
(Husimi, 1940; Kano, 1965; Mehta and Sudarshan, 1965). 

Further assume that the relevant system is in the coherent state I o t; A) 
with complex amplitude a = (q + ip)/v/-2. Then we obtain the phase-space 
probability distribution 

' [ ' ' ] W(r, k) = ~ exp - ~  (r - q)2 _ 2 (k - p)2 (4.55) 

Using this result, we can calculate the average values and fluctuations of the 
phase-space variables r and k as 

(r) = q, (k) = p, (Ar) 2 = (Ak) 2 = 1 (4.56) 

It should be noted that the expectation values and fluctuations of  the position 
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and momentum operators of  the relevant system in the coherent state I a;  A) 
are given by 

= _ i (4.57) ()~A) = q, (PA) = P, ( /~k '~A)2 (At0A)2 2 

It is easily seen from equations (4.56) and (4.57) that the following relations 
are satisfied: 

I ( r )  = (XA), (k)  = (t0A), (mr)2 = (z~k.~a)2 .4. I (Ak)2 = (AI0A)2 _ ~ _  

(4.58) 

The enhancement of  the fluctuations calculated by the phase-space probability 
distribution W(r, k) is due to the vacuum fluctuation of the reference system, 
and this enhancement is equivalent to that caused by the simultaneous mea- 
surement of the noncommuting observables (Wrdkiewicz, 1987; Arthurs and 
Kelly, 1965; Stenholm, 1992). 

4.6.2. The Number Eigenstate 

Let us consider here that the reference system is in the number eigenstate 
In; B). Substituting 15' = In; B)(B; n l into equation (4.6), we obtain 

(B; y l0 ' lx ;  B) n! 2~-----~ exp y2) H.(x)Hn(y) 

= {A; x115refly; A) (4.59) 

where H,(x) is the Hermitian polynomial of  order n. It is easy to see from 
this equation that the operator Pref becomes the statistical operator for the 
number eigenstate of the relevant system; that is, I%er = In; A)(A; n l. Thus, 
the phase-space probability distribution W(r, k) is given by 

1 
W(r, k) = ~ (A; n, IX[151 Ix, n; A) (4.60) 

where I Ix, n; A) = / ) ( Ix)  In; A) is the displaced number state of  the relevant 
system (Boiteux and Levelut, 1973; Mahran and Satyanarayana, 1986; de 
O|iveira et al., 1990). 

Suppose the coherent state l a; A) of the relevant system. In this case, 
the phase-space probability distribution is calculated as 

[ ] W(r, k) = 1 (r - q)2 + (k - p)2 
2n+ln! "rr [, , ] exp - ~  (r - q)2 _ 2 (k - p)2 (4.61) 
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with ~ = (q + ip)/,j2. Thus, we obtain the average values and fluctuations 
of the phase-space variables r and k, 

(r) = q, (k) = p, (Ar) 2 = (Ak) 2 = n + 1 (4.62) 

This means that the fluctuations become greater as the photon number of the 
reference system increases. 

4.6.3. The Thermal State 

Consider the thermal state of  the reference system given by 

P' - 11+~,=,~__~0 ~ in; B)(B; n I (4.63) 

where ~ is the bosonic distribution function. Using the result obtained for 
the number eigenstate of the reference system, we find that the operator 
/5(Ix)Ora/)t(I.Z) is the displaced thermal state 

1 ,~=o I lx, n; A)(A; n, ix l (4.64) 
b ( o ' ) 1 5 ~ ' b t ( P ' ) -  l + n = 

where I la., n; A) is the displaced number state of the relevant system. Thus, 
we obtain the phase-space probability distribution 

_ ! ,~--~0 // A" W(r,k) 2"rr(l + ~ ) , =  ~ ( , n , p ~ l f ) l ~ , n ; A )  (4.65) 

For the coherent state of the relevant system I o t; A) with complex 
amplitude ot = (q + ip)/v/2, equation (4.65) becomes 

_ l [ ( r - - q ) 2 +  ( k - p )  2] 
W(r, k) 2"tr(l + ~) exp 2(1 + ~) (4.66) 

Using this result, we can calculate the average values and fluctuations of the 
phase variables r and k, 

(r) = q, (k) = p, (Ar) 2 = (Ak) 2 = 1 + ~ (4.67) 

It is reasonable that the fluctuations become larger as the temperature of the 
reference system increases. 

4.6.4. The Coherent State 

For the coherent state 113; B) of the reference system, by substituting 15' 
= 1 13; B)(B; 131 into relation (4.6), we obtain 
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(A; xl ~ref ly; A) 

= (B; y I ~' Ix; B) 

[ 1 I t3,2 ) 2] 1 
= - ~  exp (x 2 + y2) + .,/~(x13" + y13) ~ (I 32 + - 1131 

(4.68) 

Thus, we find that the operator ~ref is the statistical operator for the coherent 
state of the relevant system; that is, I%,f = 113"; A)(A; 13"[. Since we obtain 
the operator/)(p,)lbr~f/)t(ix) = l la, + 13"; A)(A; tx + 13"1, the phase-space 
probability distribution W(r, k) is given by 

W(r, k) = ½a(~  + 13") (4.69) 

where Q(Ix) is the Q-function of the relevant system. Thus, the phase-space 
probability distribution is nothing but the Q-function of  the relevant system. 
When the relevant system is also in the coherent state Is ;  A>, the average 
values and fluctuations become 

(r) = q - 0, (k) = p + p, (Ar) 2 = (Ak) 2 = 1 (4.70) 

where ~ = (q + ip)/v/2 and 13 = (q + ip)/,/~. 

4.6.5. The Squeezed-Vacuum State 

Finally, consider the squeezed-vacuum state of  the reference system: 

0' = J~, 0; 8><8; 0, ~ 

= $8(~2) I 0; B><B; 01S~(~) (4.71) 

where SB = exP[½(~/~.2 - I~*/~2)] is the squeezing operator of the reference 
system. In the same way as for the coherent state of  the reference system, 
we can obtain the following phase-space probability distribution W(r, k): 

1 
W(r, k) = ~ (A; IX, ~*1~1~*, ix; A) (4.72) 

where I~, ~; A> = b(ix)S(~)10; A) is the squeezed-coherent state of  the 
relevant system (Gardiner, 1991; Carmichael, 1993; Walls and Milburn, 1994; 
Yuen, 1976; Caves and Schumaker, 1985) and S(~) = exp[½(~6 *z - ~.~2)] 
is the squeezing operator of the relevant system. When the squeezing parame- 
ter is real (~ = 3') and the relation (4.2 lc) is used, the phase-space probability 
distribution can be expressed as 

× exp[--e-2~(x -- r) 2 -- e2~(p -- k)2]Ww(x, p) (4.73) 
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where Ww(x, p) is the Wigner function of the relevant system. It should be 
noted that this relation is equivalent to the generalized antinormally ordered 
distribution function considered in Lee (1995). 

When the relevant system is in the coherent state l a; A) with a = (q 
+ ip)/ , f2,  the phase-space probability distribution (4.72) becomes 

(r - q)2 (k Z p)2 -] 
I exp 1 + e---~vJ (4.74) W(r, k) = "rr( e~ + e_~) e 2~ + 1 

where we have assumed, for simplicity, that the squeezing parameter is real 
(6 = "Y). Thus, we obtain the average values and fluctuations of the phase 
space variables r and k, 

9.y (r) = q, (k) = p, (Ar) 2 = ½(1 + e- ), (Ak) 2 = ~-(1 + e -2~) 
(4.75) 

The uncertainty product becomes ArAk  = cosh % For the strong squeezing 
limit (13'1 > >  1), we obtain 

(Ar)2 ~ ( ~ L ~ A ) 2  - -  1 for ~/--~ --~ (4.76a) 

(Ak)2 ~ (A/~A)2 -- / for ~/ --~ ~ (4.76b) 

Thus, if we use the squeezed-vacuum state of the reference system with an 
extremely large squeezing parameter, we can prevent additional noise from 
being introduced in the one quadrature component. 

5. S U M M A R Y  

This paper has presented the phase-space representation of quantum 
systems in terms of  the relative-position and relative-momentum states I ~s(r, 
k))) and I "G(r, k))) and has introduced the phase-space probability distributions 
W(r, k) and l~'(r, k). The relative-position and relative-momentum states are 
constructed in the extended Hilbert space consisting of those of the relevant 
and reference systems. The reference system can in some case be interpreted 
as a measurement apparatus. Using the relative-position or relative-momen- 
tum state, we have obtained the phase-space representations of the position, 
momentum, annihilation, and creation operators. The phase-space representa- 
tion of the relevant system is obtained by projecting the extended Hilbert 
space into the appropriate subspace. The transformation between the phase 
space and position (or momentum) space has also been obtained, and the 
properties of a free particle and harmonic oscillator have been investigated 
as examples of the phase-space representation. 

The phase-space probability distribution in the relative-state formulation 
is expressed as a convolution of the quasiprobability distributions of the 
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relevant and reference systems, and this phase-space probability distribution 
is found to be closely related to the operational probability distribution when 
the reference system can be considered as a measurement apparatus. Note that 
the phase-space probability distribution is positive-definite. The characteristic 
function calculated by the phase-space probability distribution is expressed 
as a product of the characteristic functions calculated by the quasiprobability 
distributions of the relevant and reference systems. The uncertainty relation 
in the phase space, which is equivalent to the operational uncertainty relation. 
has also been obtained. Furthermore, the marginal distributions derived from 
the phase-space probability distribution have been investigated. 

In this paper, the relative-state formulation has been used to construct 
the phase-space representation of a quantum system. It is shown that this 
formulation is suitable for describing relaxation processes (Ban, 1991b,c) 
and also applicable to thermo field dynamics (Umezawa et al., 1982; Umez- 
awa, 1993; Kowalsky et al., 1988; Ezawa et al., 1991), which is a real-time 
quantum field theory with thermal degrees of freedom. It has recently been 
shown that the relative-state formulation in thermo field dynamics makes it 
possible to construct a quantum phase operator in the most natural way 
(Ban, 1994b). 

APPENDIX. FOCK REPRESENTATION OF THE RELATIVE- 
POSITION AND RELATIVE-MOMENTUM STATES 

This appendix first derives the Fock representation of the relative-posi- 
tion state [ "its(r, k))). When the position eigenstate Ix; A) is expanded in terms 
of the number eigenstate I n; A) such that 6tfi In; A) = n In, A), and we use 
the expressions 

1 ( -~  x z) H,(x) (Ala) (A; xl n; A) - (,rrln2,,n!)l/2 exp 

1 
In; A> = ~ (6t)'~10; A) (Alb) 

where H,(x) is a Hermite polynomial of order n, then we can obtain 

Ix;A> = ~ (A;nlx;A>ln;A> 
n=0 

= tT_,i4e_.~2 n ~ 1__ (d,tx/-~),,H,,(x)lO; A) 
n=O II! 

[ Ix2 ~t (6t)2110; A> (12) : 'rr -1/4 exp --~ + 
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In the last equality of this equation, we have used the relation 

 oZ__ " = n! H,,(x) = e x p ( - z  - + 2xz) (A3) 

Similarly, we can get for the reference system 

l y; B> = Tr-1/4 exp[-?-y-I, + ,,/~y/~t _ .~(/;t)2]_ I 0; B> (A4) 

Substituting equations (A2) and (A4) into equation (2.8) and performing 
the Gaussian integral, we obtain the Fock representation of the relative- 
position state: 

I~r,(r, k)>) = ~ e "j-'krp- 
• , / 5 - ;  

1 1 
- - -  exp - -  

f~ dx Ix + r; A> Q Ix; B>e i~  ̀

1 ) 
I Ixl 2 + p~d t - -  Ix*/?f  -b ~t~t __ 2 iskr 

× I0; A) Q I0; B) (A5) 

where the complex parameter is given by tx = (r + ik)/,j2. 
Next consider the Fock representation of  the relative-momentum state 

I#i,.(r, k)>). Since <.4; p I n; A> is the Fourier transform of <.4; x l n; A), we obtain 

Ip; A> = ~ (A; nip; A>ln; A> 
n=0 

_ 1 ( ~  
j_~ dx eipx ,,Z=o (A; nlx; A>ln; A> 

[ l p  z ix/~p~t+~(ft)Z]lO;A) (16)  = "rr -1/4 exp - 2  + 1 

Similarly, we can get for the reference system 

I p; B> = "rr-t/4 exp[_½p2 + i v/~pf~t + ½(/~t)z] 10; B> (A7) 

Thus the following Fock representation (2.24) is derived by substituting 
equations (A6) and (A7) into equation (2.19) and by performing the 
Gaussian integral: 

1 e_i(l_s)krl2 f~ I qr,,(r, k)>> - f f ~  dp Ip + k; A> Q Ip; B)e -in" 

_ l -2 ~i 2 
2 ~  exp I + I~t~ * + - + ~ iskr 

X 10; A) ® 10; B> (A8) 
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It should be noted here that by substituting s = 0 into equations (A5) 
and (A8), the Fock space representations (A5) and (A8) become equivalent 
to those obtained in connection with the EPR problem (Fan Hong-yi and 
Klauder, 1994). 
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